

Universidad de Valladolid

deepCLEM:

A new Deep-Learning-based Platform for Label-Free Correlative Light and Electron Microscopy

Rosa María Menchón-Lara¹, Biagio Mandracchia^{1,2}

¹ Laboratorio de Procesado de Imagen, Universidad de Valladolid, Spain. ² Scientific-Technical Central Units, Instituto de Salud Carlos III, Spain.

Objectives

The increase of the yield of CLEM data for the study of cell infection.
The enabling of new kinds of experiments where fluorescent labeling is not practical or feasible.

- To develop deep learning tools for a completely label-free CLEM
- To improve the accuracy, speed, and scalability of CLEM
- To ensure compatibility with different non-invasive LM techniques
- To reduce the risk of artifacts during the sample preparation

Methodology

Classical

Image Processing

IMAGE

REGISTRATION

deepCLEM Workflow:

IMAGE DENOISING

deepCLEM

Deep Learning

- Combination of Electron Microscopy, label-free 3D Light Microscopy and computational techniques
- Integration of classical image processing techniques, Machine Learning and Deep Learning tools
- Automatic image annotation and correlation processes

Stages of development:

- 1. Efficient DL models capable of identifying different cell structures from different label-free microscopy images.
- 2. High-throughput pipeline for the multimodal microscopy image correlation.
- 3. Validation of the deepCLEM generalizability for the identification of cell structures.
- 4. Use deepCLEM to study structure-function relationships in infectious pathogens.

Preliminary results: Detection of RBCs infected by the parasite Babesia Divergens

github.com/deepCLEM

IMAGE

TRANSFORMATION

Machine Learning

IMAGE

SEGMENTATION

IMAGE

CORRELATION

Acknowledgments

This work is supported by the Spanish "Ministerio de Ciencia, Innovación y Universidades" - "Agencia Estatal de Investigación" and FEDER, UE, under grant PID2022-142166NA-I00.

B. M. is supported by the "Ramón y Cajal" grant RYC2021-032084-I.

